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Abstract

We present a new paradigm for intraoper-
ative closed-loop control of analgesia in hu-
mans. The infusion rate of the opiate alfen-
tanil is the manipulated variable which is
administered intravenously through a Com-
puter Controlled Infusion Pump (CCIP).
The two regulated outputs are the patient’s
Mean Arterial Pressure (MAP) and the drug
concentration in the plasma. Maintaining
MAP within acceptable ranges improves the
patient’s reactions to surgical stimulation.
Tracking plasma concentrations enables anes-
thesiologists to titrate analgesic administra-
tion to other qualitative signs of inadequate
analgesia. An explicit Model Predictive Con-
troller (MPC) was designed to achieve the
above mentioned goals. The results of clin-
ical tests of the controller on humans are pre-
sented and discussed.
Keywords - Closed-loop Control, Model Pre-
dictive Control (MPC), Analgesia, Alfentanil,
Mean Arterial Pressure (MAP).

1 Introduction

Closed-loop administration of analgesic drugs may
be used to improve the patient care by titrating
drug delivery to specific and monitorable clinical
end-points and to relieve the anesthesiologist from
routine tasks. However, there is no agreement on the
clinical end-point to which analgesic drugs should be
titrated [3]. According to the International Associa-
tion for the Study of Pain, pain is an ‘unpleasant
sensory and emotional experience associated with
actual or potential tissue damage’. This means that
it may be improper to talk about pain during gen-
eral anesthesia when the patient is unconscious [7].
Nevertheless, opiates are routinely administered in-
traoperatively to decrease autonomic stress reactions
to surgical stimulation [1, 6], such as Mean Arte-
rial Pressure (MAP) and Heart Rate (HR) increases.

These reactions must be minimized during surgery
for the benefit of the patient [9].

Clinically, it may not be feasible to use a Single
Input Single Output (SISO) controller to regulate
MAP with opiates because of several reasons. First,
opiates do not necessarily decrease MAP. They can
if the MAP is elevated because of pain. Second,
ceiling doses of opiates are not able to completely
suppress the MAP reactions to surgical stimulation
[5, 8]. Overdosing leads to prolonged respiratory de-
pression and therefore long extubation times [10]. Fi-
nally, other qualitative signs of inadequate analgesia
such as sweating and lacrimation are also considered
in practice.

We developed an automatic control system to ad-
minister analgesic drugs during general anesthesia.
We chose MAP as the main indicator of analgesia and
the drug concentration in the plasma as a second in-
dicator. Regulation of MAP must have priority over
tracking plasma concentration. The controller must
aim at maintaining both output variables within the
constraints specified by the anestesiologist. Further,
it must react with higher aggressiveness upon viola-
tion of the constraints.

To reach the above mentioned goals, we designed
an explicit Model Predictive Controller (MPC). The
two outputs of the system are predicted plasma con-
centration and measured MAP values. The manip-
ulated input is the infusion rate of alfentanil. Since
one of the outputs of the system is a variable pre-
dicted by a model, the controller realizes a trade-
off between a closed-loop analgesic administration to
regulate MAP and an open-loop policy to target drug
plasma concentrations. In this paper, we will first
focus on the controller tuning and design. Then we
will present and discuss the results of clinical studies
where the controller was tested on patients.
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2 Control design

Fig. 1 depicts the block diagram of the control
system used to regulate MAP and predicted plasma
concentration of alfentanil. P represents the patient,
whose measured MAP was denoted as y2. M is a dy-
namic PK model used to predict drug concentration
in the plasma y1 depending on the patient’s weight
and height. C represents the MPC controller which
computes the infusion rate of the pump u. K is the
observer including an algorithm to reject MAP arti-
facts. x̂ represents the observer states, which are the
drug concentrations in the different compartments
plus an additive disturbance to compensate for MAP
reactions to surgical stimulation. y1,ref and y2,ref
are plasma concentration and MAP references, re-
spectively.

A linearized PK-PD model to predict the future
output estimates of the drug’s plasma concentra-
tion and MAP was adopted as an internal model
in the MPC algorithm. The PK part consists of
a three compartment model whose parameters were
adapted from the published literature to match mea-
sured plasma concentrations collected during a clin-
ical study on volunteers [4]. The PD part consists
of an effect compartment linked to the central com-
partment of the PK model.

At every sampling time k the MPC controller com-
putes the next m infusion rates {u(k|k, ..., u(k+m−
1|k)} which minimize the following objective func-
tion:

J =

p−1∑

i=0

wu||u(k + i|k)||2+ (1)

+ w∆u||∆u(k + i|k)||2+

+ wy1 ||[y1(k + i+ 1|k)− y1,ref (k + i+ 1)]||2+

+ wy2 ||[y2(k + i+ 1|k)− y2,ref (k + i+ 1)]||2+

+ ρεε
2

subject to the following input and output con-
straints:

umin < u < umax (2)

y1 − y1,max < ε · b1,max (3)

y1 − y1,min > −ε · b1,min (4)

y2 − y2,max < ε · b2,max (5)

y2 − y2,min > −ε · b2,min. (6)

The input moves are computed according to (1) to
minimize the tracking error of MAP and predicted
plasma concentrations, the drug infusion rate u

and its rate of change ∆u for the next p steps in
the future. The violation of the constraints for the

M

K C

y1;ref

y2;ref

y1

y2
u

P
x̂

Figure 1: Block diagram of the explicit MPC controller.

input and ouput variables is handled through the
constraints in the optimization (2) - (6).
The output constraints {y1,max, y1,min} and
{y2,max, y2,min} can be chosen by the anesthesi-
ologists according to the patient’s cardiovascular
conditions and the type of surgical procedure. The
optimization weights {w∆u, wu, wy1 , wy2 , ρε} were
tuned to achieve the following clinical goals:

• regulation of MAP must have priority over
tracking of plasma concentrations;

• the controller must keep MAP in a specified
range around the reference value without ag-
gressively tracking a specific value;

• the controller should react with marked aggres-
siveness when output constraints are violated.

The three requirements above were met by imposing
wy1 < wy2 < ρε.
The weights {b1,max, b1,min, b2,max, b2,min} deter-
mine the controller’s tolerance upon constraint vio-
lation. Precisely, the lower the weight, the more ag-
gressive will the controller be upon violation of that
particular constraint. Constraint violations were
ranked as follows from the most to the least severe:

1. hypotensive periods (y2 < y2,min)

2. overdosing (y1 > y1,max)

3. hypertensive periods (y2 > y2,max)

4. underdosing (y1 < y1,min).

According to the above ranking the weights for
the constraint violation were selected by imposing
b2,min < b1,max < b2,max < b1,min.

The controller is implemented in its explicit for-
mulation. That is, the minimization problem (1) is
translated into an equivalent piece-wise affine con-
trol algorithm [2]. This enables anesthesiologists to
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visualize more directly how a specific set of weights
affects the controller’s performance. The choice of
the prediction horizons m and p affect the complex-
ity of the explicit controller formulation. In order
to minimize the complexity while guaranteeing ade-
quate performance we set p = 10 and m = 3.

Since MAP measurements are acquired in our
studies through an invasive catheter, they are often
corrupted by artifacts. A supervisory system was
designed to reject measurement artifacts from the
closed-loop algorithm, which makes the controller
applicable in the OR.

3 Clinical validation

Fig. 2 depicts the closed-loop performance of the
controller during a hernia removal on a 49 years
old female. The patient reacted very sensitively
to both surgical stimulation and alfentanil. The
strong raise of MAP due to the stimulations at
t = 109, 120, 137, 150, 169 min triggered controller re-
actions comparable to manually administered bolus
doses. MAP decreased sharply after each raise in the
predicted concentrations. A MAP artifact at t = 162
min was correctly detected and did not trigger any
harmful controller reaction.

Fig. 3 depicts the controller behaviour during
the central phase of a lumbar hernia removal per-
formed on a 37 years old woman. At t = 170 min
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Figure 2: Closed-loop performance during surgery of

the MAP controller. In the upper and mid-

dle plots, predicted plasma concentrations y1

and MAP values y2 are represented together

with the output constraints and the refer-

ence values, respectively. In the lower plot,

the infusion rate u is depicted.
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Figure 3: Closed-loop performance during surgery of

the MAP controller. For a detailed descrip-

tion of the contents of each plot, refer to the

caption of Fig. 2.

MAP and the predicted concentration were equal to
their respective reference values. After t = 170 min
and t = 187 min, y2,ref was decreased to 80 and
60 ng/ml, respectively. The anesthesiologist wanted
to test whether the same adequate control perfor-
mance could be achieved with lower analgesic con-
centrations in the plasma. The controller was able
to perform adequately with respect to MAP regula-
tion with lower plasma concentrations from t = 170
min to t = 200 min. MAP increased again during
skin closure, which occurred at t = 203 min. The
controller reacted leading to higher plasma concen-
trations, since MAP regulation has a higher priority
in the controller design.

Fig. 4 depicts the behaviour of the controller dur-
ing a spinal cord surgery performed on a 41 years
old male. During the whole period MAP and drug
plasma concentration were higher than their refer-
ence values. The control algorithm must increase
the infusion rate because of the high MAP but at
the same time it must decrease it because of the
high plasma concentration. The controller realized a
trade-off between the two incompatible objectives by
targeting an almost constant plasma concentration
which compensates for the high MAP. This concen-
tration depends on the optimization weights on MAP
and plasma concentration in the objective function
(1). Particularly, between t = 160 min and t = 180
min the MAP stayed constantly about 15 mmHg
above the reference value. The controller adjusted
the infusion rates in such a way that the plasma con-
centrations stayed constantly about 100 ng/ml above
the reference value. At t = 185 min a strong surgical
stimulus triggered a strong MAP reaction resulting
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Figure 4: Closed-loop performance during surgery of

the MAP controller. For a detailed descrip-

tion of the contents of each plot, refer to the

caption of Fig. 2.

in MAP values beyond the upper constraints for ap-
proximately 2 min. The controller reacted with a
high infusion rate resulting in a plasma concentra-
tion equal to the upper constraint. Since the weight
on the upper constraint for plasma concentration is
higher than the one on the upper MAP constraint
the controller did not allow plasma concentrations
to go beyond 400 ng/ml.

4 Conclusions

We presented a new paradigm for the the
closed-loop administration of analgesic drugs during
surgery. MAP was used as the main indicator of
the analgesic state of the patient. The use of pre-
dicted plasma concentrations of the analgesic as a
second output to be controlled enabled the anesthesi-
ologists to titrate drug administration to alternative
signs of inadequate analgesia and to prevent over-
dosing. We chose a MPC approach to regulate MAP
and predicted concentrations of alfentanil, realizing
a user definable trade-off between closed-loop con-
trol to regulate MAP and open-loop targeting policy
of drug plasma concentrations. The MPC algorithm
enabled us to handle the different output constraints
with different controller aggressiveness.

A major critique may be moved to the approach
presented here. Adjusting the infusion rate of opi-
ates solely on the basis of MAP neglects important
other patient information such as Heart Rate (HR),
Cardiac Output (CO) and Bispectral Index (BIS).
The presence of predicted plasma concentrations as

a second output of the system partially compensated
for the perceived oversimplification.

We presented and discussed the results of three
clinical studies which were performed at the Univer-
sity Hospital in Bern. The controller showed sat-
isfactory results in the OR. MAP reactions to sur-
gical stimuli were compensated by the controller’s
reactions. When MAP lied in a satisfactory range
around the reference value, the controller was suc-
cessfully tracking the predicted plasma concentration
provided by the anesthesiologists. Finally, the con-
troller was able to react promptly upon violation of
the output constraints.
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